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Abstract: A simplified procedure is described for assigning Cahn ± Ingold ± Prelog
descriptors to stereocentres in spheroalkanes (the CnHn molecules, with n even, based
on trivalent, polyhedral carbon frameworks, a class which subsumes the fulleranes).
By extension, similar descriptors can be found for the atoms of fullerenes and related
carbon-only molecules. Assignment maps are given for chiral fullerenes C28, C76, C78,
C84 and C140, and for a number of spheroalkanes. Cases of breakdown of the simple
procedure for triangle-rich spheroalkane molecular graphs are discussed.
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Introduction

Assignment of configurational descriptors for specification of
stereogenic centres in molecules is, in principle, a solved
problem. The powerful and general set of sequence rules
constructed by Cahn, Ingold and Prelog (CIP) provides the
standard description.[1] These rules, possibly with some further
refinement,[2] are applicable to all molecular structures,
including, therefore, the polyhedral carbon and hydrocarbon
cages that are the subjects of this paper. Application of the
rules to fullerenes and their derivatives is, however, perceived
to be cumbersome, to the extent that alternative descriptions
have been devised specifically for use in this area.[3] The
purpose of the present paper is to demonstrate that, at least
for many fully hydrogenated such cages (spheroalkanes[4] and
fulleranes), the CIP assignment is readily computed from
purely graph-theoretical considerations. An algorithm is
described and applied to some representative spheroalkanes
and fulleranes, with a simple expedient for extension of the
procedure to the fullerenes themselves. Although the simple
procedure works well for fulleranes and fullerenes, some
problems remain for triangle-rich spheroalkanes.

Definitions : A spheroalkane[4] is the fully hydrogenated form
of a trivalent, polyhedral carbon framework. When the faces
of the polyhedron are all either pentagonal or hexagonal, the
spheroalkane is a fullerane, the fully hydrogenated form of a
fullerene.[5] Some sources extend the definition of fulleranes to
cover all spheroalkanes of 20 or more vertices, irrespective of
face size.[6] The carbon centre in a spheroalkane is directly
bonded to three carbon neighbours and to one hydrogen
atom. Each hydrogen atom may lie inside or outside the cage;
this leads to many isomeric possibilities, but here we consider
spheroalkanes in their ªnormalº form, in which all CH bonds
are exo to the cage. On this understanding, the graph may be
ªprunedº of hydrogens, which can be restored later without
ambiguity, and the only criterion for distinguishing carbon
centres (CH units) is then the connectivity of the underlying
framework. A pruned spheroalkane graph is identical to the
graph of a spheroarene.[4] An atlas of all possible spheroal-
kanes with up to 16 carbon atoms is given in [7] and adjacency
information for larger structures is readily generated, for
example with the plantri program.[8]

Cubic graphs are those in which each vertex is joined by
edges to three neighbours (in a chemical context these are
known as trivalent graphs); three-connected graphs are those
for which the removal of at least three vertices is required to
disconnect the graph; planar graphs are those which can be
drawn in the plane without the crossing of edges; polyhedral
graphs are those which are both planar and three-connected.[9]

Thus, the problem of assignment of descriptors in these CnHn

frameworks is concerned with cubic, polyhedral graphs
embedded in three-dimensional space.

At first sight, fulleranes and spheroalkanes are rather
unpromising subjects for the application of the CIP rules, as
each carbon to be labelled is surrounded by a sea of chemically
equivalent near and distant neighbours. There are indeed
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special problems in distinguishing such ªnearly equivalentº
sites. The uniformity of the structure, however, implies that
the assignment process will largely depend on graph-theoret-
ical considerations, and may in fact be more readily pro-
grammed than for some more chemically varied structures.

The process of attaching CIP labels in these arrays of
chemically identical subunits can be separated into two
logically distinct steps. The first is purely combinatorial, in
which priorities one to four are assigned to the four ligands
around each stereogenic centre. As H has a lower priority
than any carbon atom (Rule 1[1c]), this task for CnHn reduces
to the assignment of large, medium and small priorities to the
three carbon neighbours of each centre. The second is
geometrical or affine in nature: once the labels are found,
the choice of descriptor from the set {R, S} is determined by
the ªsteering-wheel ruleº,[1a] which depends on the relative
positions in space of the ligands to which we have attached
priorities L(arge)>M(edium)> S(mall)> (H), that is, on the
embedding of the graph in space.

A polyhedron can be drawn in the plane as a Schlegel
diagram.[10] Several definitions of this construction exist in the
literature.[11] Here we take the point of view that a Schlegel
diagram is constructed by seating a polyhedron on a face and
flattening the whole object so that the bottom face expands to
contain the rest.[5] It may sometimes be convenient to stand
the polyhedron on a vertex or an edge, in which case the
Schlegel diagram will have a vertex or edge midpoint at
infinity. Notice that we started by looking at the three-
dimensional object from outside and above, so that the central
portion of the diagram represents components of structure
that were initially closest to the viewer. With this convention,
the drawing encodes both the connectivity and, in the case of a
chiral polyhedron, the enantiomeric identity; that is, both the
combinatorial and geometrical aspects. Mirror-image Schlegel
diagrams represent opposite enantiomers and may be inter-
converted by lifting them out of the drawing plane and turning
them over, or by breaking and re-forming edges, but not by
using solely operations that preserve connectivity and con-
strain all vertices to the plane (see Figure 1).

An algorithm : An algorithm is readily devised from a perusal
of the CIP rules,[1] and it turns out that the cases of interest are
small enough to be handled without any special attention to

Figure 1. Enantiomers of a C2-symmetric spheroalkane, represented as
three-dimensional and Schlegel diagrams of the underlying carbon frame-
work.

optimisation of the program. In fact, the specific case of
descriptor assignment for spheroalkanes was considered by
Dreiding and Prelog in correspondence a decade ago.[12]

Note that the simplified rules described below are a
condensation of the general CIP rules for the specific case
of polyhedral arrays of equivalent units such as CnHn. They
are easily adapted to derivatives such as CnFn and so on, where
R (S) centres in CnHn become S (R) in CnFn. They do not apply
to more general molecules.
1) Starting from a Schlegel diagram or other representation

of the molecular connectivity, construct an adjacency list
for the pruned polyhedron in some freely chosen vertex-
numbering scheme.

2) For each stereocentre, C1, say, construct a rooted tree based
on the atom. (Figure 2) The nodes of the tree carry vertex
labels from the graph and are arranged on concentric
ªspheresº Si . S0 is C1 itself ; S1 contains the three
neighbours of C1, u, v and w, each joined to C1 by an edge
of the graph. The three sub-trees starting from u, v, w are
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aÁ la meÂthode geÂneÂrale de Cahn, Ingold et Prelog (CIP), et
speÂcialement adapteÂ aÁ l�attribution des descripteurs steÂreÂochi-
miques R ou S aux steÂreÂocentres des spheÂroalcanes (moleÂcules
CnHn (n pair), dont le squelette carboneÂ forme un polyeÁdre
trivalent, et dont les fulleranes constituent une classe particu-
lieÁre). On eÂtend la deÂfinition de ces descripteurs aux atomes des
fullereÁnes et autres cages polyeÂdriques de carbone (spheÂroa-
reÁnes). Les figures donnent les attributions pour les fullereÁnes
chiraux C28, C76, C78, C84 et C140, ainsi que pour d�autres
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proceÂdeÂ deÂcrit ici. Figure 2. Rooted tree based on vertex 1 of the Schlegel diagrams of

Figure 1.[12]
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the branches Bu, Bv, Bw The tree grows outwards by
bifurcation at each node, so that each node x on sphere Si

(i> 0) is joined by an edge to one predecessor on Siÿ1 and
(if x is not a duplicate node) to each of two successors on
Si�1 The concept of a duplicate node is defined in the
following way: each x on sphere Sk defines a path of length
k leading from C1; if this path closes at x, then x is a
duplicate node and is either a copy of the root atom itself
(closure as a cycle) or of a vertex already encountered on
the path (closure as a ªtadpoleºÐa cycle with a tail). S1

and S2 contain no duplicate nodes, as all cycles in
polyhedra are of size three or more. In principle, the tree
grows radially out from the root, until every path has
terminated with a duplicate node. In practice the assign-
ment of priorities to branches Bu, Bv, Bw normally requires
explicit construction of only a part of the whole tree.

3) The CIP ordering of branches Bu, Bv, Bw as of L(arge),
M(edium) and S(mall) rank (L>M> S) is done on the
basis of the number of duplicate nodes found in each
branch on successive spheres.
Let the first sphere on which at least one duplicate node is
found be Sj , and let Nj(u), Nj(v) and Nj(w) be the numbers
of duplicate nodes on this sphere in the branches Bu, Bv

and Bw, respectively:
a) If Nj(u)<Nj(v)<Nj(w), then u is L, v is M and w is S;
b) If Nj(u)�Nj(v)<Nj(w), then w is S. To fix the other

priorities, one has to go further, to sphere m (m> j), the
first sphere where a difference between Bu and Bv is
found, with, say, Nm(u)<Nm(v), and then u is L and v is
M;

c) If Nj(u)<Nj(v)�Nj(w), then u is L. To fix the other
priorities, one has to go further to sphere m (m> j), the
first sphere where a difference between Bv and Bw is
found, with, say, Nm(v)<Nm(w), and then v is M and w
is S.

Remark : The symmetry of the rooted tree is the same as the
site symmetry of the root atom, which, in a trivalent
polyhedron, is C1 or C3 (chiral sites in a chiral molecule, or
prochiral sites in an achiral molecule), and Cs or C3v (achiral
sites in an achiral molecule). Trivially, the process described
must fail to terminate with an LMS ordering of the three
branches when C1 is at an achiral site, but it may also fail to
deliver an ordering in some cases to be discussed below.

4) Now go on to atom C2, and so on. If the molecule has
nontrivial symmetry, it is only necessary to treat one atom
from each orbit (set of symmetry-equivalent atoms), and,
of course, only chiral and prochiral orbits need to be
considered. In chiral molecules, all members of an orbit
carry the same descriptor. In achiral molecules, prochiral
atoms that exchange under proper operations have the
same label R or S, and prochiral atoms that exchange
under improper operations have opposite labels. Thus, in
an achiral molecule, each orbit of prochiral sites is equally
balanced between R and S.

Remark : Up to this point no information beyond the
adjacency list of the graph of the carbon skeleton has been
used. Steps 1 to 4 of the algorithm are purely combinatorial. In

the next step, the LMS triple is converted to an {R, S}
descriptor of absolute configuration.

5) From the coordinates, the Schlegel diagram, a three-
dimensional model or a picture, determine the clockwise
or anticlockwise orientation of the LMS triple viewed from
C1 out to its attached exo H atom. A convenient mnemonic
for this is the CIP ªsteering-wheel ruleº.[1a] A more formal
device for the same purpose is the (pseudo)-scalar triple
product:
PLMS� (rL� rM) ´ rS

in which rL, rM and rS are position vectors of the L, M and S
ligands, drawn from a common origin inside the cage; the
sign of PLMS determines the descriptor, positive for R and
negative for S.

Remark : A useful way to obtain plausible three-dimensional
coordinates for spherical polyhedral structures directly from
adjacency information has been described in the fullerene
literature under the name of ªtopological coordinatesº,[13]

Cartesian coordinates deduced directly from the p-orbital-
like eigenvectors of the adjacency matrix. They may then be
scaled to give chemically reasonable bond lengths, but are
already sufficient for the purpose of computing the sign of the
triple product PLMS as they give the bonded partners of each
atom as its physically nearest neighbours. Topological coor-
dinates are used in all the examples quoted in the present
paper.

Extension to fully unsaturated cages (spheroarenes): In
spheroarenes (and fullerenes), the carbon atoms occupy
three-coordinate sites and the CIP rules for tetrahedral
stereocentres, strictly speaking, do not apply. An obvious
and simple expedient is to take the spheroarene as a pruned,
normal-form (fully exo) spheroalkane and to apply the
descriptors for corresponding carbon sites directly. Descrip-
tors obtained in this way would not distinguish between the
different possible coordination geometries at a spheroarene
carbon, pyramidal pimple or inward dimple, but they would
encode the sense of the triangle of neighbours. Incidentally,
the same descriptors would be retained for endohedral
fullerenes X@Cn, in which X is a high-priority ªneighbourº
on the inside of the cage and replaces the low-priority exo-
hydrogen atoms of the normal fullerane.

Proposed IUPAC conventions for chiral fullerenes[5b] allow
for the assignment of an overall descriptor C or A to different
enantiomers. Given a standard numbering scheme for the
fullerene vertices, also envisaged in the conventions, knowl-
edge of the CIP {R, S} label assigned as above for any one
given numbered vertex is tantamount to fixing the {C, A}
label.

Complexity : The above description gives the essentials of a
programmable algorithm of CIP assignment for spheroal-
kanes. Computation of the numbers of nonbacktracking, non-
self-crossing paths in a graph has the potential to grow
alarmingly with the total number of vertices, and if resolution
of branch priority requires construction of a substantial
portion of the whole rooted tree for each vertex, the process
is bound to be costly. Initially the number of nodes on sphere
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Figure 3. Assignment of chiral descriptors for an enantiomer of the C2-
symmetric C10H10, barettane, shown in Figure 1.

Figure 4. Assignment of chiral descriptors for an enantiomer of the C1-
symmetric C12H12 spheroalkane.

Figure 5. Assignment of chiral descriptors for an enantiomer of the C3-
symmetric C16H16 spheroalkane.

Figure 6. Assignment of chiral descriptors for the C2v-symmetric C8H8,
cuneane, and the C3v-symmetric C10H10, diademane or mitrane.

Figure 7. Assignment of chiral descriptors for the hypothetical D2-sym-
metric C28 fullerene.

Sk grows as 3.2kÿ1, and for a Hamiltonian graph (one with a
cycle containing all vertices)[9] for example, the rooted tree
will certainly have as many spheres as the graph has vertices.
A priori, it is not possible to rule out a case where it would be
necessary to construct the whole tree to complete the
assignment, at least for some awkward vertex.

It is already clear that the decision process may sometimes
require consideration of a very large number of spheres. As an
example, consider a large icosahedral fullerene framework,
initially of full Ih symmetry, in which the twelve pentagons are
separated by large triangular graphitic regions. Now perturb
the framework by a Stone ± Wales[14] bond rotation at a
prochiral site in one of the large triangular faces, introducing
paired pentagonal and heptagonal rings. Sites which were
achiral in the unperturbed cage now become chiral, but for
those which are approximately antipodal to the site of the
perturbation, the length of path required to fix the {R, S}
assignments will be of the order of the diameter[9] of the
graph.

Another specific pattern that is likely to lead to long paths is
one where the root vertex and two of its neighbours, u and v,
say, all belong to the same orbit, that is, are all equivalent in
the point group of the polyhedral framework. Equivalence of
u and v is lifted in the rooted tree, but the distinction between
the two branches involved will probably remain ªsmallº and
become apparent only at path lengths that span a large part of
the polyhedron, if indeed the distinction appears at all.

It has already been noted in the description of the algorithm
that the process of searching for differences between branches
in their numbers of nonduplicate nodes, sphere by sphere,
does not terminate in a decision for all stereocentres.

The first case of nontermination is the trivial one in which
the root of the tree is an achiral site.

The next case of nontermination is when all three branches
are equivalent by symmetry. When the site symmetry of the
root vertex is C3, the three branches are of equal weight on all
spheres Sk, and it is necessary to invoke a further sequence
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rule (see the final sequence rule, §6.3 of [1c]). In this case,
assignment proceeds by arbitrarily giving highest rank to one
of the three rotationally equivalent neighbours (u, say) and
then deciding between the other two branches on the basis of
the more frequent of occurrence of u on the first sphere at
which there is a difference in numbers of copies of u. This
usually gives a decision, but there are examples of molecular
graphs where this simple enumeration of copies of u fails to
give an assignment (see Figure 13, later).

A third possibility for nontermination is that a rooted tree
could have two or even three branches that coincided in
numbers of nonduplicate nodes at every level, even though
not forced to do so by symmetry
equivalence. In such cases an
auxiliary rule is needed (see
Figure 12 and 13, later). At
least for the isomers of fuller-
enes and fulleranes considered
here, this problem does not
arise, and complete assignment
is possible.

Results

The algorithm is implemented
in a Fortran program which
takes adjacency data as input.
Framework coordinates are cal-
culated by diagonalisation of
the adjacency matrix and selec-
tion of eigenvectors. Rooted
trees are constructed from the
centre out to a sufficiently re-
mote sphere, LMS priorities
assigned and triple products
used to convert them to {R, S}
descriptors as described above.
The numbering schemes are
shown on the Schlegel dia-
grams. In the case of the larger
fulleranes/fullerenes these are
the IUPAC standard schemes.[5b]

Descriptor assignments are
shown as accompanying tabu-
lations. A bracketed entry de-
notes the use of the extra rule
for a C3 site.

Figures 3 to 5 show specific
enantiomers of small spheroal-
kanes with {R, S} attributions.
The C2-symmetric ªbaret-
taneº[15] (Figure 3) was the ex-
ample assigned by Dreiding
and Prelog.[12] Paths of length
of at most five are needed in
this case. Figure 4 shows a C1-
symmetric spheroalkane ob-
tained by truncating one vertex

of the previous structure. Figure 5 shows a C3-symmetric
spheroalkane for which all vertices but one fall into isochiral
orbits of size three, and the unique vertex (16) requires
invocation of the special procedure for sites with all ligands
equivalent. Figure 6 includes the orbits of prochiral sites in C2v

cuneane[16] with two R and two S sites, and C3v diademane[17] or
mitrane[18] with three R and three S sites. These examples
serve to illustrate the procedure.

The hypothetical D2 isomer of C28 (Figure 7) is the smallest
intrinsically chiral fullerene.[5a] Figures 8 to 10 show three
experimentally characterised chiral fullerenes,[19] isomers of
C76 (D2), C78 (D3) and C84 (D2). Comparison with [5b] shows

Figure 8. Assignment of chiral descriptors for the D2-symmetric C76 isolated-pentagon fullerene (A enantiomer);
here and on the following four figures, one representative is shown for each orbit of atomic sites.

Figure 9. Assignment of chiral descriptors for the D3-symmetric C78 isolated-pentagon fullerene (C enantiomer).
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that the forms illustrated here are, respectively, the A, C and
A enantiomers.

Figure 11 shows the repeat unit of the smallest chiral
icosahedral fullerene C140,[20, 21] viewed from outside the
carbon sphere. The 140 vertices can be broken down into
two sets of 60 (C1 site symmetry) and one of 20 (C3 site
symmetry). Each of the 60 pentagon vertices has two
neighbours in the same orbit, and resolution requires paths
of length 18. For the orbit of the 60 vertices exo to the
pentagons, the required paths are of
length seven, and for the remaining
20 vertices the C3 rule is invoked.
Again the {R, S} label of any one of

the carbons of this structure is
sufficient to fix the enantiomer
of both fullerane (in normal
form) and fullerene.

Problem cases : Figure 12 shows
a bad case for step 3 of the
algorithm. This is a 28-vertex T-
symmetric polyhedral cage, in
fact the smallest spheroalkane
of this symmetry.[4, 21] It has four
triangular and twelve hexago-
nal faces, and the vertices fall
into two orbits of twelve (site-
symmetry C1) and one of four
(site-symmetry C3). Applica-
tion of step 3 of the algorithm
gives immediate assignment for
the twelve vertices exo to the
triangles. The special procedure
for C3 sites gives an assignment
for the set of four vertices at the
centres of the tetrahedral faces.
Each member of the 12-orbit of
triangle vertices has two neigh-
bours in its own orbit and one in

the exo orbit. It is clear that the exo branch has L(arge)
priority. However, computation shows that two branches of
the rooted tree remain of equal weight at each sphere from
the first all the way to the last (S27), even though these
branches are not equivalent by symmetry. These vertices
remain unassigned with the simple algorithm.

Systematic truncation of this graph yields further problem
cases. Figure 13 shows 10 truncations that preserve C3

symmetry and lead to C34 spheroalkane skeletons. In all 10

Figure 10. Assignment of chiral descriptors for the D2-symmetric C84 (A enantiomer), isolated-pentagon
fullerene 84:22 (spiral nomenclature[5a]).

Figure 12. A chiral, tetrahedrally symmetric C28H28 (smallest spheroalkane of T symmetry) spheroalkane,
in which some sites (marked with a black spot) of C1 symmetry are not fully assigned by step three of the
algorithm.

Figure 11. Assignment of chiral descriptors
for the I-symmetric C140 isolated-pentagon
fullerene. Only a portion of the surface
sufficient to show the environment of the
sites belonging to the three orbits is shown,
as seen from outside the molecule.
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there are sets of vertices in triangles that are unassigned even
when step three of the algorithm is taken to the last sphere,
S33, and in one case the atom on the C3 axis itself and its
nearest neighbours are also unassigned, notwithstanding the
application of the weighted counting rule for C3 site symme-
tries. Although it is risky to generalise from such a small
sample, it is perhaps noteworthy that all these failures occur in
graphs with many triangles. The equivalent of Figure 12 with
six squares (O-symmetric C56) or twelve pentagons (the
aforementioned I-symmetric C140), the smallest spheroalkanes
of these symmetries,[4, 21, 22] are both fully assignable by a
combination of step three and the C3-rule. Further investiga-
tion of the problem cases is indicated, though the simple
algorithm suffices for our main purpose of assigning CIP
descriptors to fullerenes.
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Figure 13. Further C3-symmetric polyhedra, created by truncation of the
tetrahedral C28H28 graph, all of which give incomplete assignments with the
simple algorithm. Unassigned vertices are marked with a black spot.


